Serveur d'exploration H2N2

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A co-accretional model of satellite formation

Identifieur interne : 002B88 ( Main/Exploration ); précédent : 002B87; suivant : 002B89

A co-accretional model of satellite formation

Auteurs : A. W. Harris [États-Unis] ; W. M. Kaula [États-Unis]

Source :

RBID : ISTEX:2FB245A0F2764778D0AEF6481B260F026E7A064F

English descriptors

Abstract

Abstract: Numerical calculation of a simple accretion model including the effects of tidal friction indicate that coformation is tenable only if the planet's Q is less than about 103. The parameter which most strongly affects the final mass ratio of the pair is the time at which the secondary embryo is introduced. Our model yields the proper Moon-Earth mass ratio if the Moon embryo is introduced when the Earth is only about 1 10 of its final mass. The lunar orbit remains at about 10 Earth radii throughout most of the growth. This model of satellite formation overcomes two difficulties of the “circumterrestrial cloud” model of Ruskol (1960, 1963, 1972): (1) The difficulty of accumulating a mass as great as the entire Moon before gravitational instability reduces the cloud to a small number of moonlets is removed. (2) The differences between terrestrial and outer planet satellite systems is easily understood in terms of the differences in Q between these planets. The high Q of the outer planets does not allow a satellite embryo to survive a significant portion of the accretion process, thus only small bodies which formed very late in the accumulation of the planet remain as satellites. The low Q of the terrestrial planets allows satellite embryos of these planets to survive during accretion, thus massive satellites such as the Earth's Moon are expected. The present lack of such satellites of the other terrestrial planets may be the result of tidal evolution, either infall following primary despinning (Burns, 1973) or escape due to increase in orbit eccentricity.

Url:
DOI: 10.1016/0019-1035(75)90071-8


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>A co-accretional model of satellite formation</title>
<author>
<name sortKey="Harris, A W" sort="Harris, A W" uniqKey="Harris A" first="A. W." last="Harris">A. W. Harris</name>
</author>
<author>
<name sortKey="Kaula, W M" sort="Kaula, W M" uniqKey="Kaula W" first="W. M." last="Kaula">W. M. Kaula</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:2FB245A0F2764778D0AEF6481B260F026E7A064F</idno>
<date when="1975" year="1975">1975</date>
<idno type="doi">10.1016/0019-1035(75)90071-8</idno>
<idno type="url">https://api.istex.fr/ark:/67375/6H6-FNK8VL9L-S/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001343</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">001343</idno>
<idno type="wicri:Area/Istex/Curation">001343</idno>
<idno type="wicri:Area/Istex/Checkpoint">001750</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">001750</idno>
<idno type="wicri:doubleKey">0019-1035:1975:Harris A:a:co:accretional</idno>
<idno type="wicri:Area/Main/Merge">002D60</idno>
<idno type="wicri:Area/Main/Curation">002B88</idno>
<idno type="wicri:Area/Main/Exploration">002B88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">A co-accretional model of satellite formation</title>
<author>
<name sortKey="Harris, A W" sort="Harris, A W" uniqKey="Harris A" first="A. W." last="Harris">A. W. Harris</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Planetary and Space Sciences, University of California, Los Angeles 90024</wicri:regionArea>
<placeName>
<settlement type="city">Los Angeles</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kaula, W M" sort="Kaula, W M" uniqKey="Kaula W" first="W. M." last="Kaula">W. M. Kaula</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Planetary and Space Sciences, University of California, Los Angeles 90024</wicri:regionArea>
<placeName>
<settlement type="city">Los Angeles</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Icarus</title>
<title level="j" type="abbrev">YICAR</title>
<idno type="ISSN">0019-1035</idno>
<imprint>
<publisher>ELSEVIER</publisher>
<date type="published" when="1975">1975</date>
<biblScope unit="volume">24</biblScope>
<biblScope unit="issue">4</biblScope>
<biblScope unit="page" from="516">516</biblScope>
<biblScope unit="page" to="524">524</biblScope>
</imprint>
<idno type="ISSN">0019-1035</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0019-1035</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Accreting planet</term>
<term>Accretion</term>
<term>Accretion process</term>
<term>Angular momentum</term>
<term>Circular orbit</term>
<term>Circumplanetary cloud</term>
<term>Critical value</term>
<term>Embryo</term>
<term>Embryo satellite</term>
<term>Embryo satellites</term>
<term>Energy loss</term>
<term>Final mass</term>
<term>Final mass ratio</term>
<term>Gravitational instability</term>
<term>Harrisand kaula</term>
<term>Initial coagulation</term>
<term>Integral expression</term>
<term>Kaula</term>
<term>Larger body</term>
<term>Lower limit</term>
<term>Lunar origin</term>
<term>Mass gain</term>
<term>Mass ratio</term>
<term>Mutual collisions</term>
<term>Negligible effect</term>
<term>Numerical integrations</term>
<term>Orbit motion</term>
<term>Orbit path</term>
<term>Orbit radius</term>
<term>Other hand</term>
<term>Outer planet satellite systems</term>
<term>Outer planets</term>
<term>Planet embryo</term>
<term>Planet mass</term>
<term>Planet radii</term>
<term>Planetary rotation</term>
<term>Planetesimal</term>
<term>Planetesimal cloud</term>
<term>Random motion</term>
<term>Random velocity</term>
<term>Ring particles</term>
<term>Ring thickness</term>
<term>Roche limit</term>
<term>Safronov</term>
<term>Satellite</term>
<term>Satellite embryo</term>
<term>Satellite formation</term>
<term>Satellite radius</term>
<term>Satellite systems</term>
<term>Semimajor axis</term>
<term>Similar expression</term>
<term>Small number</term>
<term>Solar distance</term>
<term>Solar nebula</term>
<term>Solar system</term>
<term>Specific dissipation function</term>
<term>Such satellites</term>
<term>Surface density</term>
<term>Terminal stage</term>
<term>Terrestrial planet</term>
<term>Terrestrial planets</term>
<term>Thin disk</term>
<term>Tidal</term>
<term>Tidal evolution</term>
<term>Tidal friction</term>
<term>Upper limit</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Numerical calculation of a simple accretion model including the effects of tidal friction indicate that coformation is tenable only if the planet's Q is less than about 103. The parameter which most strongly affects the final mass ratio of the pair is the time at which the secondary embryo is introduced. Our model yields the proper Moon-Earth mass ratio if the Moon embryo is introduced when the Earth is only about 1 10 of its final mass. The lunar orbit remains at about 10 Earth radii throughout most of the growth. This model of satellite formation overcomes two difficulties of the “circumterrestrial cloud” model of Ruskol (1960, 1963, 1972): (1) The difficulty of accumulating a mass as great as the entire Moon before gravitational instability reduces the cloud to a small number of moonlets is removed. (2) The differences between terrestrial and outer planet satellite systems is easily understood in terms of the differences in Q between these planets. The high Q of the outer planets does not allow a satellite embryo to survive a significant portion of the accretion process, thus only small bodies which formed very late in the accumulation of the planet remain as satellites. The low Q of the terrestrial planets allows satellite embryos of these planets to survive during accretion, thus massive satellites such as the Earth's Moon are expected. The present lack of such satellites of the other terrestrial planets may be the result of tidal evolution, either infall following primary despinning (Burns, 1973) or escape due to increase in orbit eccentricity.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Los Angeles</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Harris, A W" sort="Harris, A W" uniqKey="Harris A" first="A. W." last="Harris">A. W. Harris</name>
</region>
<name sortKey="Kaula, W M" sort="Kaula, W M" uniqKey="Kaula W" first="W. M." last="Kaula">W. M. Kaula</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/H2N2V1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    H2N2V1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:2FB245A0F2764778D0AEF6481B260F026E7A064F
   |texte=   A co-accretional model of satellite formation
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Apr 14 19:59:40 2020. Site generation: Thu Mar 25 15:38:26 2021